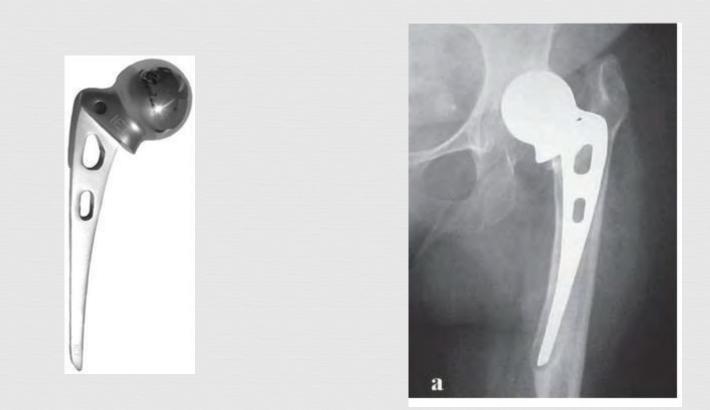
Total Hip Arthroplasty

Dr Suresh Annamalai MBBS, MRCS(Edn), FRCS(Tr & Orth)(Edn), FEBOT(European Board), Young Hip and Knee Fellowship(Harrogate, UK) Consultant Arthroplasty and Arthroscopic Surgeon Manipal Hospital, Whitefield, Bangalore

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

R1891:-


CS Dr. Gluck performs first reported attempt at a hip replacement with ivory used to replace the femoral head

R1940:-

Austin Moore performs first metallic hip replacement surgery (hemiarthroplasty) with a proximal femoral replacement bolted to the femur

1952

Austin Moore prosthesis developed

1960:-Sir John Charnley

introduces concept of *low friction arthroplasty*

Concept: termed "low friction" as a small femoral head was used to reduce wear

components :metal femoral stem, polyethylene acetabular component,acrylic bone cement

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Indications

- 1. Debilitating pain affecting activities of daily living.
- 2. Pain not well controlled by conservative measures.
- 3. Medically fit for surgery
- 4. No active infection- anywhere

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Resigns include Prosthesis Design

🛯 femoral component

- cemented
- og press-fit (uncemented)

 - extensively porous coated stems

🛯 acetabular components

- cemented

 - ca metal
- og press-fit (uncemented)
 - ca metal

- og polyethylene
- 🧭 metal
- 😋 ceramic

Bone School @ Bangalore

Metal on Metal

Ceramic on Ceramic

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Implant Fixation

œ cement fixation
 polymethylmethacrylate (PMMA)

biologic fixation (cementless fixation)
 bone ingrowth
 bone ongrowth

cement fixation


Rechanism

acts as grout by producing interlocking fit

between surfaces

R Indications:-

Elderly Patients Irradiated Bone Stovepipe femur

cement fixation optimized

Ieads to reduced stress points in cement

increased risk of mantle fractures if < 2mm mantle

stems place stress on cement mantle

avoid malpositioning of stem to decrease stress on cement mantle

🛯 smooth femoral stem

sharp edges produce sites of stress concentration

core absence of mantle defects

- defined as any area where the prosthesis touches cortical bone with no cement between
- creates an area of higher concentrated stress and is associated with higher loosening rates

varus or valgus stem positioning increases stress on cement mantle

ingrowth
 bone grows into porous structure of implant
 ongrowth
 bone grows onto the microdivots in the grit blasted surface

Biologic Fixation

Biological Fixation

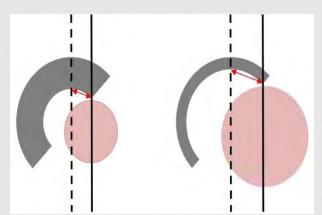
vounger patients
 older patients with good bone stock
 revision total hip arthroplasty

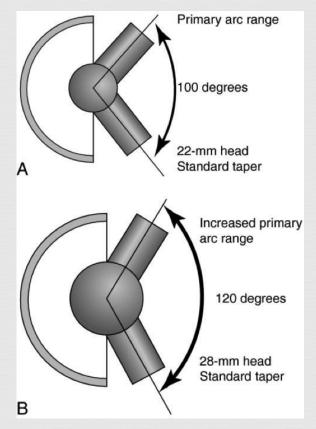
 press fit technique
 slightly larger implant than what was reamed/broached is wedged into position
 line-to-line technique
 size of implant is the same as what was

- reamed/broached
- screws often placed in acetabulum if reamed line-to-line

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications


THA- Joint Stability techniques


component design
component position

component design Femoral

large femoral heads:-

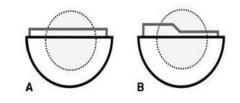
Decreased dislocation rates
 head neck ratio increase
 Jump distance increases
 Femoral Offset

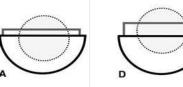
component design acetabulum

Relevated rim liner

R Lateralized liner

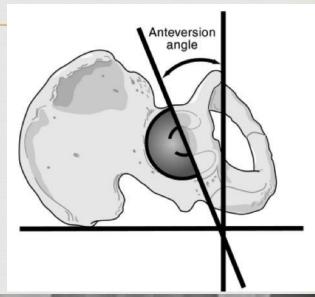
Liner Profile

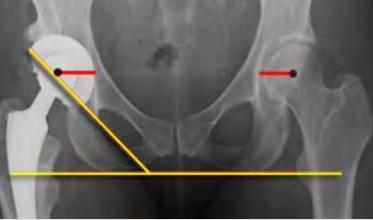

Liner Profile


A, Standard.

A, Standard.

D, Lateralized


B, Elevated rim.

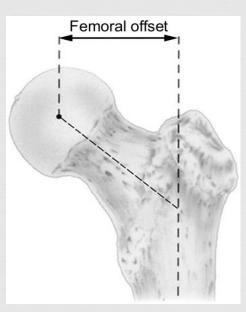

Component Position

Acetabular position anteversion _5° - 25° abduction _30° - 50°

Caveats

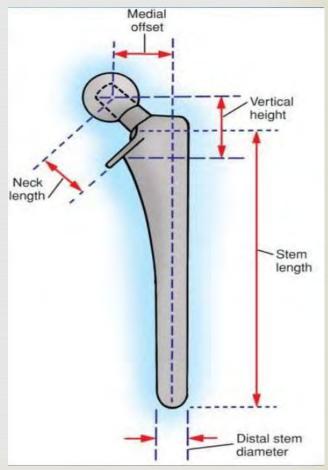
posterior approach should err towards more anteversion anterior approach should err towards less anteversion

Component Position


→ Femoral stem position Ideal : 10°- 15° of anteversion Caveats

more difficult to adjust femoral component version in uncemented femoral components

Combined version: 37 degrees


soft-tissue tensioning

Restoration of offset
increased offset leads
increased soft-tissue tension
decreased impingement
Increase joint Stability
decreased joint reaction force
Decreased offset leads
Instability, abductor weakness
Gluteus medius Lurch

Techniques to increase offset

increasing length of femoral neck
decreasing neck-shaft angle
medializing the femoral neck while increasing femoral neck length
trochanteric advancement _
alteration of the acetabular liner

Soft Tissue Function

central nervous system
central nervous system
central nervous system
central soft tissue integrity

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Articular Bearing Technology

Metal-on-polyethylene
Metal-on-metal
Ceramic on Ceramic

Metal-on-polyethylene

metal (cobalt-chrome) femoral head on polyethylene acetabular liner

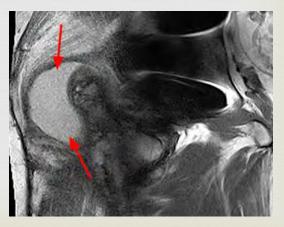
- longest track record of bearing surfaces
- lowest cost
- most modularity

disadvantages

- higher wear and osteolysis rates compared to metal-on-metal and ceramics
- smaller head (compared to metal-on-metal) leads to higher risk of impingement

Metal-on-metal

better wear properties than metal-on-polyethylene larger head allows for increased ROM before impingement


🛯 Disadvantages

more expensive than metal-on-polyethylene Increased metal ions in serum and urine (5-10x normal) may form pseudotumors hypersensitivity (Type IV delayed type hypersensitvity)

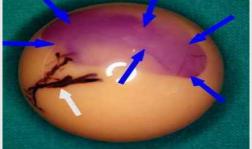
Contraindications

pregnant women renal disease metal hypersensitivity due to metal ions

Ceramic on Ceramic

best wear properties of all bearing surfaces lowest coefficient of friction of all bearing surfaces inert particles

more expensive than metal-on-polyethylene


worst mechanical properties (alumina is brittle, low fracture toughness)

Squeaking

less modularity with fewer neck length options stripe wear

The Epidemiology of Revision Total Hip Arthroplasty in the United States

By Kevin J. Bozic, MD, MBA, Steven M. Kurtz, PhD, Edmund Lau, MS, Kevin Ong, PhD, Thomas P. Vail, MD, and Daniel J. Berry, MD

- Most common reasons for revision:
 - Instability/Dislocation : 22.5%
 - Mechanical Loosening: 19.7%
 - Infection: 14.8%

TREND TOWARDS USING LARGE HEADS

CLINCAL ORTHOPAEDICS AND RELATED RESEARCH Number 465, pp. 122–127 © 2007 Lippincoft Williams & Wilkins

Minimum 6-year Followup of Highly Cross-linked Polyethylene in THA

Charles R. Bragdon, PhD^{*}; Young Min Kwon, MD^{*}; Jeffrey A. Geller, MD^{*}; Meridith E. Greene, BS^{*}; Andrew A. Freiberg, MD^{*}; William H. Harris, MD; and Henrik Malchau, MD^{*}

11.3, respectively. Radiographic evaluation showed no evidence of loosening or osteolytic lesions around the cup or stem. No revisions were performed for polyethylene wear or liner fracture. The average steady-state wear rate was -0.002 ± 0.01 mm per year and -0.026 ± 0.13 mm per year for 28-mm and 32-mm head sizes, respectively. We observed no

> Osteolysis Threshold 0.1 mm/yr (Dumbleton JH, J Arthroplasty 2002)

Clin Orthop Relat Res DOI 10.1007/s11999-015-4319-5 Clinical Orthopaedics and Related Research"

SYMPOSIUM: 2015 HIP SOCIETY PROCEEDINGS

Wear and Osteolysis of Highly Crosslinked Polyethylene at 10 to 14 Years: The Effect of Femoral Head Size

Paul F. Lachiewicz MD, Elizabeth S. Soileau BSN, John M. Martell MD

Head size (mm)	Number of hips	Median volumetric wear rate (mm ³ /year) [95% confidence intervals]		
26	10	3.1 [0.7-12.3]		
28	31	12.3 [3.0-19.3]		
32	30*	12.9 [6.6-16.8]		
36/40	12	26.1 [11.3-47.1]		

One hip excluded as a result of missing value; p = 0.020.

Today's Patients

- Younger
- More Active
- Obese
- Life expectancy will increase

The Problem: Wear and Osteolysis

Resurgence of Ceramics

- Appetite for larger heads
- Increased number of head sizes, options, and reliability

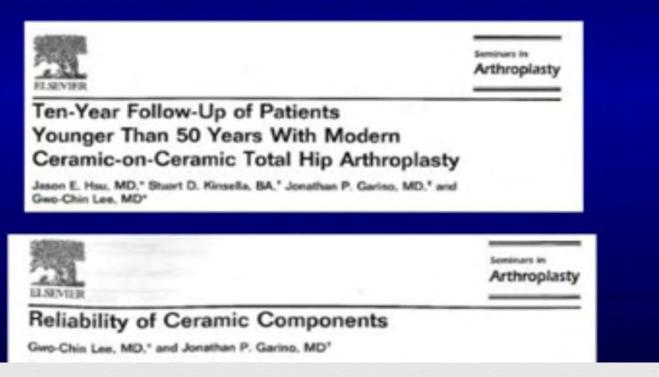
Trunionosis

Author	Journal	Year	F/U	Hips	Survivorship
Boyer	Orthop Traumatol Surg Res	2010	10.0y	83	92%
Capello	J Arthroplasty	2008	10.0y	380	95.9%
Mesko	J Arthroplasty	2011	8.3y	325	96.8%
Kim	Int Orthop	2010	11.1y	93	100%
Sugano	J Arthroplasty	2011	14.0y	100	97.9%
Solarino	J Orthop Traumatol	2012	13.0y	68	97%
Aldrian Silke	Hip Internat	2009	7.6y	229	98.2%
Lewis	J Arthroplasty	2010	8.1y	56	100%
Chevillotte	Int Orthop	2010	8.8y	100	96%
Park	Orthopedics	2010	9.6y	112	95%
Kress	Int Orthop	2011	10.5y	75	99%
Yeung	JBJS-A	2012	10.9	301	98%
D'Antonio	CORR	2012	10.1y	216	97.9%/95.2%

1570

COPTRICATE © 2012 BY THE JOURNAL OF BONE AND JOINT SUBGREY, INCORPORATED

Cementless Metaphyseal Fitting Anatomic Total Hip Arthroplasty with a Ceramic-on-Ceramic Bearing in Patients Thirty Years of Age or Younger


Young-Hoo Kim, MD, Jang-Won Park, MD, and Jun-Shik Kim, MD

99% @ Mean 14.6 Years Follow Up

The Journal of Arthroplasty Vol. 27 No. 3 2012

Modern Total Hip Arthroplasty in Patients Younger Than 21 Years

Atul F. Kamath, MD,* Neil P. Sheth, MD,† Harish H. Hosalkar, MD,‡ Oladapo M. Babatunde, MD,§ Gwo-Chin Lee, MD,I and Charles L. Nelson, MD¶

COC vs MOP

Author	Year	F/U	сос	мор
Capello	2008	8.5y	95.9%	91.3%
Mesko	2011	10y	96.8%	92.1%
Yoon	2008	17y	81%	74.4%
D'Antonio	2012	10	97.9%	91.3%

Less Osteolysis and Less Measurable Wear

Why not ceramics in everyone?

- Fewer options
- Risk of fracture
- Risk of squeaking
- Less forgiving
- Cost

Author	Year	Hips	Fractures	Rate	Squeaking
Boyer	2010	83	1 liner	1.2%	1 (1.2%)
Capello	2008	380	2 liners	0.5%	3 (0.8%)
Mesko	2011	325	2 liners 1 head	0.9%	9 (2.7%)
Kim	2010	93	0	0%	2 (2%)
Sugano	2011	100	1 liner	1%	0 (0%)
Solarino	2012	68	0	0%	NR
Aldrian Silke	2009	229	3 heads (extra long necks)	1.3%	NR
Lewis	2010	56	0	0%	0 (0%)
Chevillotte	2010	100	0	0%	6 (6%)
Park	2010	112	2 liners	1.7%	0 (0%)
Kress	2011	75	0	0%	NR
Yeung	2012	301	0	0%	1 (0.3%)
D'Antonio	2012	216	1	0.4%	2 (1%)

HIP

D. H. Owen, N. C. Russell, P. N. Smith, W. L. Walter

From Trauma and Orthopaedic Research Unit, The Canberra Hospital, Woden, Australia An estimation of the incidence of squeaking and revision surgery for squeaking in ceramic-on-ceramic total hip replacement

A META-ANALYSIS AND REPORT FROM THE AUSTRALIAN ORTHOPAEDIC ASSOCIATION NATIONAL JOINT REGISTRY

Squeaking arising from a ceramic-on-ceramic (CoC) total hip replacement (THR) may cause patient concern and in some cases causes patients to seek revision surgery. We performed a meta-analysis to determine the incidence of squeaking and the incidence of revision surgery for squeaking. A total of 43 studies including 16 828 CoC THR that reported squeaking, or revision for squeaking, were entered into the analysis. The incidence of squeaking was 4.2% and the incidence of revision for squeaking in patients receiving the Accolade femoral stem was 8.3%, and the incidence of revision for squeaking in squeaking in these patients was 1.3%.

Cite this article: Bone Joint J 2014;96-B:181-7.

Concessions

- Hard bearings are less forgiving
 - Technically demanding
 - Component position critical
 - Liner insertion (chipping)

Choices and Decisions

Patient specific

Clinically sound

 Economically responsible

Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Approaches pros and cons

Surgical approach may be dictated by -surgeon preference/Training -prior incisions -obesity -risk for dislocation -implant selection -degree of deformity Objectives C3 ry ations besis design

History
Indications
Prosthesis design
Implant fixation
THA- Joint Stability techniques
Articular Bearing Technology
Approaches pros and cons
complications

Complications

Control Dislocation
Control Periprosthetic Fracture
Control Aseptic Loosening
Control Sciatic Nerve Palsy
Control Leg Length Discrepancy
Control Iliopsoas Impingement
Control Complications

