Introduction to scoliosis

What is scoliosis?

Lateral curvature of the spine > 10 degrees

Structural scoliosisNon-structural scoliosis

Structural Curve

Cobb measurement fails to correct past zero on supine maximal voluntary lateral side bending x-ray

Non-structural

Cobb measurement measurement corrects past zero on supine lateral side bending xray

Functional scoliosis – (usu. non-structural)

Limb length discrepancy

Sciatic scoliosis

 Hysterical scoliosis - manifestation of a conversion reaction

Benign tumours – painful spasm – osteoid osteoma
Bone School @ Bangalore

Sciatic scoliosis

Screening for scoliosis – Adams test

Assessment of scoliosis-Coronal alignment

MD 61y Bone School @ Bangalore Nov 05

Assessment -Sagittal alignment

Classification of Scoliosis

Idiopathic
Congenital
Neuromuscular
Others

Idiopathic scoliosis

Cobb (L) > /= 10° + rotation Unknown etiology

Types of idiopathic scoliosis

 Infantile scoliosis - presenting from birth – 2+11

Juvenile scoliosis – 3yrs - 9+11

Adolescent scoliosis – 10yrs - 17+11

Adult scoliosis – 18 yrs and beyond

ABSENT SUPERFICIAL ABDOMINAL REFLEXES IN CHILDREN WITH SCOLIOSIS

AN EARLY INDICATOR OF SYRINGOMYELIA

HAMID G. ZADEH, SAMIR A. SAKKA, MICHAEL P. POWELL, MIN H. MEHTA

From the Royal National Orthopaedic Hospital Trust, Stanmore, England

We describe 12 children with idiopathic scoliosis who had a persistent absent superficial abdominal reflex (SAR) on routine neurological examination. MRI showed syringomyelia to be present in ten. The average age at detection of the scoliosis was 4.3 years and at diagnosis of syringomyelia 6.6 years.

In all ten children the SAR was consistently absent on the same side as the convexity of the curve. In two it was the only abnormal neurological sign. An absent SAR in patients with scoliosis is an indication for investigation for underlying syringomyelia. Burwell et al 1992; Williams 1992). Arai et al (1993), in a comprehensive study, reported that 4.0% of patients with scoliosis with curves larger than 20° had syringomyelia. New imaging techniques and improved clinical awareness have identified more patients with idiopathic scoliosis who have syringomyelia (Nohria and Oakes 1990). It is progressive and early diagnosis and treatment are therefore paramount (Williams 1992).

Our aim was to indicate the clinical features of importance in the early detection of syringomyelia with special reference to the superficial abdominal reflex (SAR) and to

e Balgaba:77-B:762-7. J Bone Joint Surg [Br]

Absent abdominal reflex

Left thoracic scoliosis

+

Absent abdominal reflex

Terminology

- Cervical scoliosis apex betwn C1 and C6-C7 disc
- Thoracic apex betwn T2 body T11-T12 disc
- T-L scoliosis apex at T12, T12-L1 disc or L1
- Lumbar apex L1-L2 disc L4-L5 disc
- L-S scoliosis apex L5 or below

Rapid Curve progression in

Curve size

> 40°

- Curve rotation
 Moe grade 2 or more
- Age ~ <10, pre-menarche

Skeletal maturity -Riser grade 0-2
 -Open acetabular cartilage

Curve progression in *immature* patients...

< 20°
20-30°
30-60°
>60°

22 % chance of progression
68 % chance of progression
90 % chance of progression
100 % chance of progression

Nachemson, Lonstein et al SRS 1982

Treatment Options

Observation (but not neglect)

Orthosis – Brace

Operative

Orthosis - Brace

Guidelines – Not accurate

10-25 degrees – Observe / Brace

25-45 degrees – Brace (growing children)

> 50 degrees - Surgery

Operative Treatment – Anterior

Operative Treatment – Posterior

Congenital Scoliosis

Classification

Type I- Failure of formation

a) Hemivertebra

b) Wedged vertebra

Classification

Type II- Failure of segmentation

- a) Block vertebrae
- b) Unilateral unsegmented bar

Classification

Type III- Mixed anomalies

Associated anomalies

33% -Genito-urinary tract anomalies

25% -Klippel –Fiel syndrome

15% -Intraspinal anomalies

10% -Cardiovascular anomalies

Table 2. Anomalies Associated With Congenital Scoliosis

Cardiac ⁹	Renal ⁹	Neurologic ⁹	
Ventricular septal defects	Renal hypoplasia	Tethered cord	
Atrial septal defects Patent ductus arteriosus	Horseshoe kidney Single kidney	Syrinx Thickened and fatty filum	
Tetralogy of fallot	Congenital megaureter	Low conus	
Transposition of great arteries	Ectopic kidney (pelvic)	Diastematomyelia	
Pulmonary stenosis	Hypospadias	Intradural mass/ Lipoma	
Sick sinus syndrome	Pelviureteric junction obstruction	Extradural mass	
	Posterior urethral valve	Chiari malformation	
	Cloacal anomaly	Arachnoid cyst	
	Epispadia	Dandy-Walker malformation	
	Exstrophy of the bladder		
	Hydronephrosis		
	Undescended testis		

Pattern of progression

50% -severe progression25% - slow progression

25% - non progressive

Winter et al JBJS 1996

Inheritance

Isolated hemivertebra - sporadic anomaly – no risk for siblings.

Multiple anomalies - 5-10% risk for future siblings.

Wynne-Davis J Med Gen 1975

1% of 1200 patients with congenital scoliosis has a known relative with the problem

Winter RB Congenital deformities of the spine 1983

Inheritance

Patients with multiple levels of bilateral failures of segmentation, with multiple fused ribs and missing segments have a positive family history.

- Spondylothoracic dysplasia
- Spondylocostal dysplasia
- Spondylovertebral dysplasia
- Jarcho-Levin Syndrome

Lonstein JE Principles and Techniques of Spine Surgery 1998

Natural history of progression

	Type of congenital anomaly						
	14		Hemivertebra			Unilateral un-	
Site of curvature	Block vertebra	Wedged vertebra	Single	Double	Unilateral unsegmented bar	segmented bar and contralateral hemivertebrae	
Upper thoracic	< 1°-1°	* – 2°	1°-2°	2°- 2.5°	2°- 4°	5°- 6°	
Lower thoracic	< 1°–1°	2°- 2°	2°- 2.5°	2°-3°	5°- 6.5°	6°- 7°	
Thoracolumbar	< 1°–1°	1.5°– 2°	2°- 3.5°	5°- *	6°– 9°	> 10°- *	
Lumbar	< 1°- *	< 1°- *	< 1°–1°	*	> 5°- *	*	
Lumbosacral	*	*	< 1°–1.5°	*	*	*	

No treatment required

May require spinal fusion

Require spinal fusion

McMaster and Ohtsuka JBJS (A) 1982 Mool @ Bangalore

Natural history of congenital scoliosis

	Type of congenital anomaly						
			Hemivertebra			Unilatoral un	
Site of curvature	Block vertebra	Wedged vertebra	Single	Double	Unilateral unsegmented bar	segmented bar and contralateral hemivertebrae	
Upper thoracic	< 1°-1°	* – 2°	1°2°	2°- 2.5°	2°- 4°	5°- 6°	
Lower thoracic	< 1°–1°	2°- 2°	2°- 2.5°	2°-3°	5°- 6.5°	6°- 7°	
Thoracolumbar	< 1°–1°	1.5°– 2°	2°- 3.5°	5°- *	6°– 9°	> 10°- *	
Lumbar	< 1°- *	< 1°- *	< 1°-1°	*	> 5°- *	*	
Lumbosacral	*	*	< 1°-1.5°	*	*	*	

No treatment required

May require spinal fusion

Require spinal fusion

Fig. 4. McMaster prognosis. (Data from McMaster and Ohtsuka (1982).)

Philosophy of surgical treatment

• Minimal concave growth potential.

• Child may be taller if fusion is done earlier.

• Better to be short and straight than shorter and crooked.

• Limited role for bracing

Surgical options

- Posterior fusion
- Anterior and posterior fusion
- Convex hemiepiphysiodesis
- Hemivertebra excision
- Growth rods / Shilla technique
- Anterior stapling

• VEPTR

(vertical expandable prosthetic stitanium rib)

Cobbs angle = 20°

No coronal decompensation

END