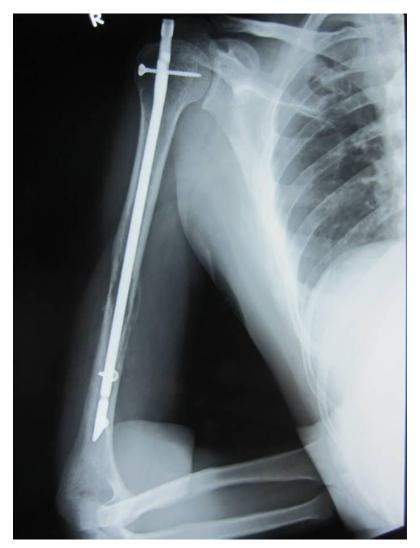
## PATHOLOGICAL FRACTURES



## Dr Srinivas C H

M S Ortho, Fellowship Ortho Oncology, Asst. Prof., Orthopaedic Oncosurgeon, BGS Global Hospitals

#### Overview of today's talk


- Introduction
- Incidence
- Mechanism of Metastasis
- Clinical Features
- Investigations / Radiology: salient features
- Evaluation
- Management Principals
- Prognosis

50 yrs, Male ??? Diagnosis



Bone School @ Bangalore





Bone School @ Bangalore

#### **Definition:**

A pathological facture is one in which a bone is broken, through an area, weakened by pre-existing disease, by a degree of stress, that would have left the normal bone intact.

In other words, a fracture involving "abnormal bone" is a pathological fracture.

## **Etiology:**

#### **Development disorders of bone:**

- a) Congenital defects of bone tissue :Osteogenesis imperfecta
  - Osteopetrosis
- b) Disorder of cartilage growth:

Achondroplasia

Diaphysealaclasis (multiple exostosis)

Dyschondroplasia (Ollier's disease)

#### **Nutritional and vitamin deficiencies:**

Scurvy

**Rickets** 

Osteomalacia

#### Hormonal imbalance :

Hyperparathyroidism

Cushing's syndrome

Pathological fracture from cortisone treatment

Frohlich's syndrome (hypopituitarism)

#### Atrophic conditions of bone :

Disuse osteoporosis

Senile osteoporosis

## Pathological fracture through infected bone :

Osteomyelitis

#### Cystic disorders and fibrous dysplasia of bone:

Unicameral bone cyst

Aneurysmal bone cyst

Non – osteogenic fibroma of bone

Monostotic and polypotential fightous dysplasia

## Paget's disease of bone

#### Primary and secondary tumors of bone:

#### a) Primary benign tumours:

Chondroma

Benign chondroblastoma

Chondromyxoid fibroma

Haemangioma of bone

Giant cell tumour of bone

Disappearing bone disease.



Osteosarcoma

Chondrosarcoma

Fibrosarcoma

Malignant – fibrous histiocytoma

Malignant round cell tumour

Multiple myelomatosis

c) Metastatic tumours of bone – lungs, thyroid, kidney, GI tract, prostrate

Bone School Bangatore



#### Marrow cell disorder:

Histiocytos Gaucher's disease

#### Parasitic disease of the bone:

Hydatid disease

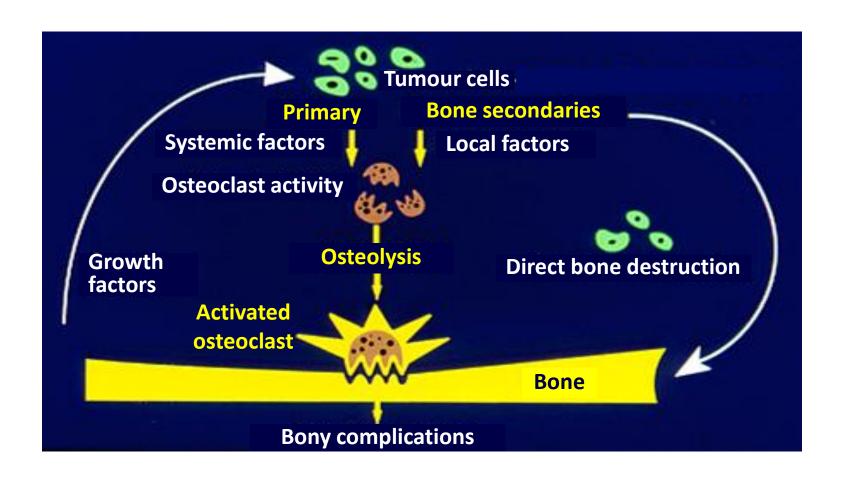
#### Neurotrophic dystrophies of the bone:

Tabes dorsalis
Syringomyelia
Diabetic neuropathy

#### latrogenic pathological fracture:

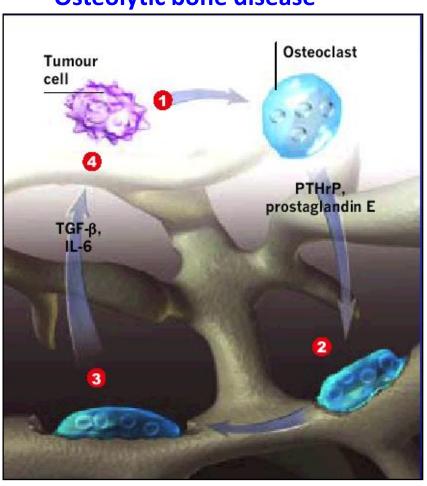
Through screw hole stress protection phenomenon Through biopsy

After removal of infected bone

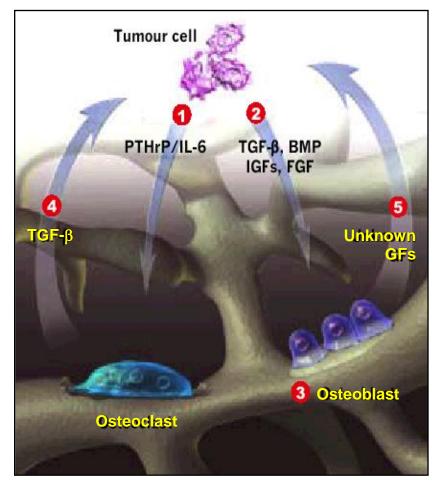

Through a donor site for a bone graft

## Clinical Importance and Prognosis of Bone Metastases

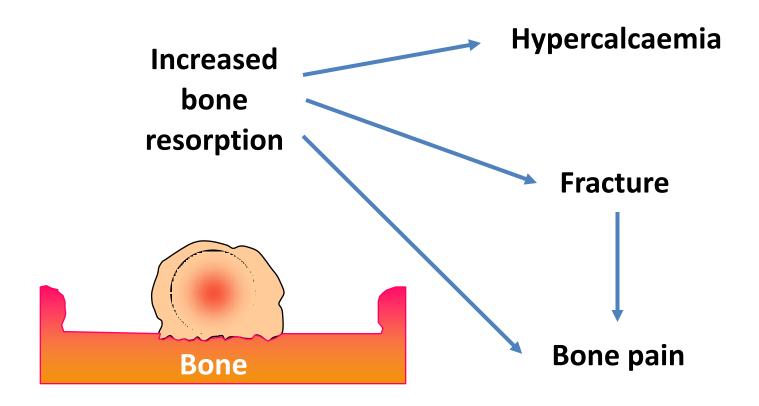
|          | Disease prevalence, U.S. (in thousands) | Bone mets. incidence (%) | Median survival (mo) |
|----------|-----------------------------------------|--------------------------|----------------------|
| Myeloma  | 75 - 100                                | 70 - 95                  | 24                   |
| Renal    | 198                                     | 20 - 25                  | 12                   |
| Melanoma | 467                                     | 14 - 45                  | 6                    |
| Bladder  | 582                                     | 40                       | 6 - 9                |
| Thyroid  | 207                                     | 60                       | 48                   |
| Lung     | 386                                     | 30 - 40                  | 7                    |
| Breast   | 1,993                                   | <b>65 - 75</b>           | 24                   |
| Prostate | 984                                     | 65 - 75                  | 36                   |


NCI, 1997; International Myeloma Foundation, 2001.

#### Pathophysiology of Bone Metastases




#### Cancer and Bone Cell Interactions


#### **Osteolytic bone disease**



#### Osteoblastic bone disease



#### Consequences of Increased Bone Resorption



#### Common cancers which metastatise to bone

#### **Osteoblastic**

- Breast
- Prostate

Endothelin – 1 ILGF

#### **Osteolytic**

- RCC
- Thyroid
- Lung

Interleukin - 6
PTHrp

#### **Mixed**

Breast

85 % of metastases from Breast, Lung, Prostate 12 % From RCC, Thyroid 3 % GIT

Bone School @ Bangalore

#### Pathological fracture is suspected when fracture occurs:

- Spontaneously
- After minor trauma
- Unusual fracture pattern
- History of recent several fractures
- Older patient
- History of primary malignancy
- Risk factors

#### **INVESTIGATIONS:**

#### **RADIOGRAPHY:**

#### **PLAIN -X-RAY:**

- Study the Fracture
- Don't ignore the perifracture changes



Other lesions

Alteration in density and architecture Extra osseous masses or abnormalities



#### Lesion location:

Usually eccentric
Cortical involvement
Diaphyseometaphyseal junction

#### Densities within the lesion:

Bone formation suggests – Osteosarcoma Calcification suggests – Chondrosarcoma



- Reaction (periosteal / endosteal) should be examined.
- Zone of transition
- Moth eaten or permeative pattern of bone reaction

#### **LABORATORY STUDIES:**

- ✓ Complete haemogram
- ✓ Peripheral smear
- ✓ Serum glucose
- ✓ Serum albumin
- ✓ Serum calcium, Phosphate
- ✓ Alkaline phosphatase
- ✓ LFT
- ✓ Urine sugar and albumin
- ✓ Bence-Jones proteins
- ✓ Serum electrophoresis

Tumor markers: Ca 125, Ca 19.9, CEA

#### Search for occult primary carcinoma:

✓ Breast -

Examination

Mammography

- ✓ Lung Chest X-ray
- ✓ Kidney Ultrasonography
- ✓ Thyroid Digital palpation
- ✓ Prostate Serum PSA

Digital prostate examination

✓ Myeloma – Bone marrow examination

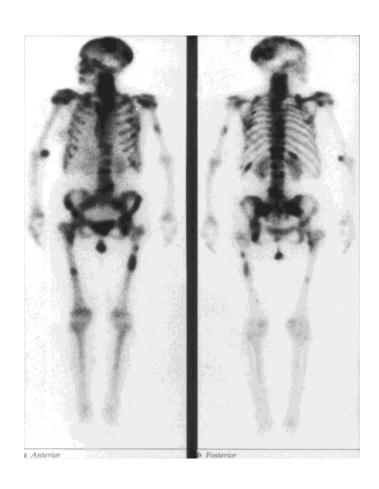
Bence-Jones proteins

Serum and urine electrophoresis

Skeletal Survey - X-ray skull, spine and pelvis.

✓ Other organs




## **MRI**

- Marrow disease
- Epidural and nerve root compression can be detected
- Localize the disease



## Bone scan





## Scan pattern

- 1. Increased accumulation in the bone hot lesion
- 2. Defect cold lesion (MULTIPLE MYELOMA some metastases –breast)
  - rare (very fast growing no bone reaction)
- 3. Flare phenomenon increased number of lesions in the case of effective therapy
- 4. Super-scan diffusely increased uptake (spread malignancies)

## PET Scan







#### **GOALS OF TREATMENT Metastatic Bone tumors:**

To provide pain-free maintenance of normal daily function

## Management of Metastatic Bone Tumors

- Management of pain
- Avoiding the fracture
- Bone stabilization

- Conservative measures
- Role of Irradiation
- Role of Surgery

## Pain management

- Non-narcotic analgesics
- Nonsteroidal anti-inflammatory drugs
- Narcotic analgesics
- Interventional anesthetic techniques

## Systemic Therapy

- Hormone therapy: Ca breast and prostate
- Chemotherapy
- Bisphosphonates: Zolindronic acid
- Targeted therapy: Denosumab

## Mechanism of action – Zolindronic acid

They have affinity for hydroxyapapatite crystals in bone.

- Inhibit osteoclastic activity.
- 2. Prevents bone resorbtion.
- Induces osteoclastic apoptosis.
- Increases osteoblastic activity
- 5. Antiangiogenic properties (animal studies)

## Radiotherapy

- External-beam radiotherapy
- Stereotactic Body Radiotherapy(SBRT)
- Radiopharmaceuticals: Unsealed source therapy with bone-seeking radionueclides

#### **Indication:**

- ✓ Pain
- ✓ Impending Fracture/ Fracture (Bone healing)

#### **External RT: Dose and fraction**

- 800 cGy in single fraction
- 3000 cGy in 10 fractions
- 2000 cGy in 5 fraction



## Multiple painful bony lesion:

- Hemibody irradiation 15-20 Gy given @ 2.5-4Gy/ Fraction
- Radioneuclide therapy

## Radionueclides

- Strontium-89, Samarium-153, P-32, Rhenium 186
   are commonly used to treat bone mets
- They get concentrated in highly active site of the bone and emit beta - particles which intern destroy the tumor cells
- It takes 7-14 days to see clinical response and the procedure can be repeated once in 12 weeks

## Surgical management

- Indication: Palliative
- Fracture: Ambulation / Pain relief
- Impending fracture

## Impending fractures:

#### Mirel's criteria for risk of fracture:

| Number assigned |                                     |                          |                                     |  |
|-----------------|-------------------------------------|--------------------------|-------------------------------------|--|
| Variable        | 1                                   | 2                        | 3                                   |  |
| Site            | Upper arm                           | Lower extremities        | Peritrochanteric                    |  |
| Pain            | Mild                                | Moderate                 | Severe                              |  |
| Lesion          | Blastic                             | Mixed                    | Lytic                               |  |
| Size            | <1/3 <sup>rd</sup> diameter of bone | 1/3-2/3 diameter of bone | >2/3 <sup>rd</sup> diameter of bone |  |
|                 | Rone School                         | ol @ Bangalore           |                                     |  |

#### Mirel's criteria for risk of fracture:

• 7 or less – observation

 $8\ or\ more\ -$  prophylactic internal fixation

Most commonly used indication for prophylactic internal fixation of impending fractures are presence of destructive painful lesion 2.5cm in diameter or loss of 50% or more of cortex of long bone.

#### **Prophylactic fixation:**

#### **Advantages:**

- Decreased morbidity
- Decreased hospital stay
- Easier rehabilitation
- More immediate pain relief
- Faster surgery and less complications
- Less blood loss during surgery

#### Risks:

- Temporary
- Fixation device may eventually fail
- Loss of fixation is the most significant complication






# Prosthetic replacement



# Fracture / Impending fracture

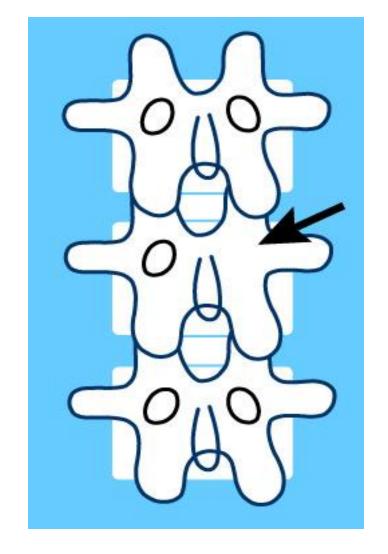




# Spine

Solitary lesion

Multiple lesion


With / without neurological deficit

## **Management**

- Diagnosis
- Prevention of neurological deficits

### Winking Owl Sign





## MRI Spine



|                                                                                    | Score                   |
|------------------------------------------------------------------------------------|-------------------------|
| General condition (Performance status)                                             |                         |
| Poor (PS 10-40%)<br>Moderate (PS 50-70%)<br>Good (PS 80-100%)                      | 0<br>1<br>2             |
| No. of extraspinal bone metastases foci                                            |                         |
| >/= 3<br>1-2<br>0                                                                  | 0<br>1<br>2             |
| No. of metastases in the vertebral body                                            |                         |
| >/= 3<br>2<br>1                                                                    | 0<br>1<br>2             |
| Metastases to the major internal organs                                            |                         |
| Unremovable<br>Removable<br>No metastases                                          | 0<br>1<br>2             |
| Primary site of the cancer                                                         |                         |
| Lung, stomach,<br>kidney, liver,<br>uterus, thyroid, prostrate, breast, GI, others | 0<br>1<br>2             |
| Spinal cord palsy                                                                  |                         |
| Complete Incomplete None  Bone School @ B                                          | 0<br>1<br>2<br>angalore |

Assessment of
Prognosis in Metastatic
Spine tumors –
Tokuhashi 1990

## Treatment plan - Harrington

Class I: No significant neurological involvement

**Class II:** involvement of bone without collapse or instability and minimal neurological involvement

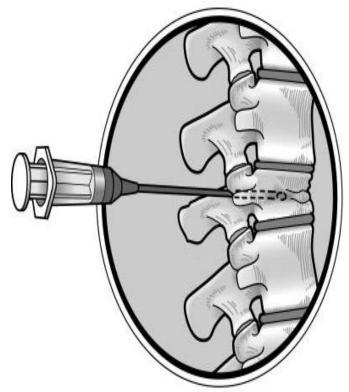
#### Recommended treatment for Class I & II:

Chemotherapy and hormonal manipulations. If no response, RT.

**Class III:** major neurological impairment without significant involvement of bone

**Recommended treatment for Class III**: usually only RT, if acute onset neurological deficit – add steroids.

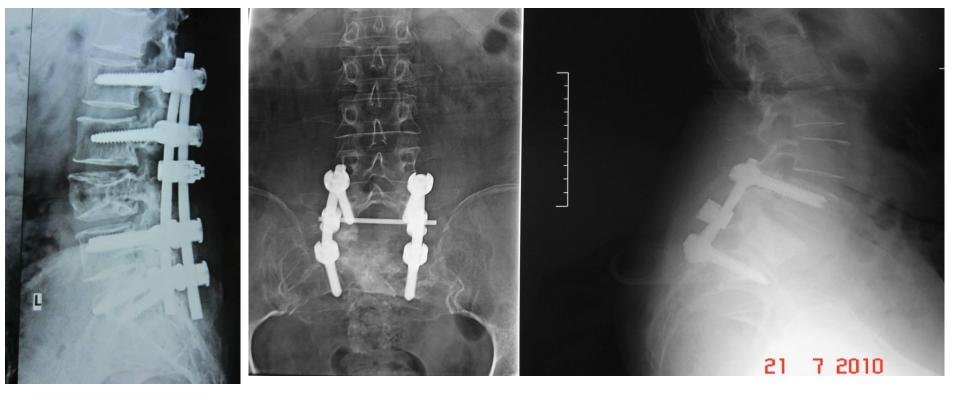
Class IV: vertebral collapse with pain attributable to mechanical causes or instability but without significant neurological compromise


**Class V:** patients with vertebral collapse or instability with major neurological compromise.

Recommended treatment for Class IV & V: surgical management with adjuvant RT.

Bone School @ Bangalore

## Percutaneous Vertebroplasty/Kyphoplasty


PMMA (Polymethylmethacrylate)











## Spine metastasis: Summary

- Single vertebral metastasis with cord compression: Surgery
- Impending fracture, better projected survival –
   Surgical fixation and RT
- Multiple spinal mets: RT
- Diffuse skeletal mets with severe pain :
   Radionuclide therapy

#### Approach to diagnosis of Metastatic lesion

## Multiple skeletal lesions

- Conventional approach
- Basic investigations
- MRI
- CT thorax/Abdomen/Pelvis/PET Scan
- Workup for Myeloma
- Tumor markers
- Endoscopy / Colonoscopy
- Biopsy



### Investigations

- S. Alk Phosphatase
- Myeloma profile:

**ESR** 

S. Electrophoresis
Bence Jones Proteins

Skeletal survey – Skull, pelvis, spine

- True cut core needle biopsy
- Bone marrow aspiration and biopsy





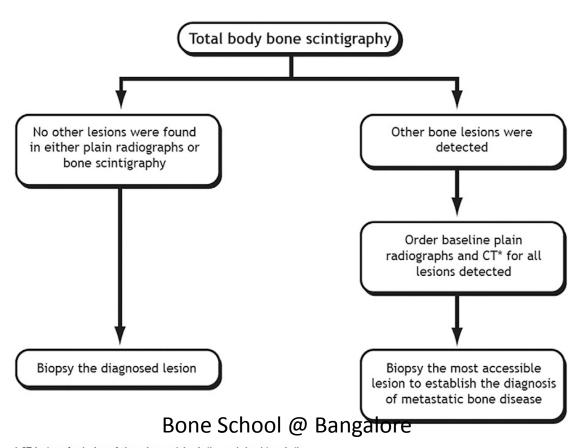
#### clinical recommendations

## Cancers of unknown primary site: ESMO Clinical Recommendation for diagnosis, treatment and follow-up

Bone School

E. Briasoulis<sup>1</sup>, N. Pavlidis<sup>2</sup> & E. Felip<sup>3</sup>
On behalf of the ESMO Guidelines Working Group\*

Department of Medical Oncology, University of Ioannina, Ioannina Ipiros, Greece; Department of Medical Oncology Service, Vall d'Hebron University Hospital, Barcelona, Spain


CUP: 3 – 4% of all malignancies

| Assessment suggested                    | Target patient population                   |
|-----------------------------------------|---------------------------------------------|
| Minimal standard work-up                | ranger patient population                   |
| Thorough medical history                | All patients                                |
| and physical examination                | F                                           |
| Basic blood and                         | All patients                                |
| biochemistry survey                     | -                                           |
| Urinalysis and testing for              | All patients                                |
| fecal occult blood                      |                                             |
| CT scans thorax,                        | All patients                                |
| abdomen and pelvis                      |                                             |
| Work-up for clinicopathological subsets |                                             |
| Mammography or breast                   | Female with                                 |
| MRI (optional)                          | axillary adenopathy                         |
| Serum aFP and bHCG                      | Patients with midline<br>metastatic disease |
| Serum PSA                               | Male with                                   |
|                                         | adenocarcinoma bone<br>metastases           |
| Head and neck CT scan or CT/PET         | Cervical adenopathies                       |
| scan (optional)                         | with squamous cell carcinoma                |
| @Bangalore                              | Must be sign or                             |
|                                         | symptom oriented                            |

# Algorithm for evaluation of a patient with a known history of Cancer

#### AGGRESSIVE BONE LESION IN A PATIENT WITH A HISTORY OF CANCER

Search for other painful anatomic sites and order plain radiographs or computerized tomography (CT)\* scan for each one of them



<sup>\*</sup> CT is done for lesion of the spine, pelvic girdle, and shoulder girdle







Mever ever give up!

Thank you

Bone School @ Bangalore