

Thomas Kishen Spine Surgeon Sparsh Hospital for Advanced Surgeries Bangalore

Magnetic Resonance Imaging

MRI: Absorption and emission of radiofrequency energy by hydrogen nuclei placed in a strong magnetic field B₀

MRI

Without B₀: Random orientation of nuclei spin angular momentum u With B₀: *Magnetization* phenomenon

Hydrogen nuclei of the body

RF pulse applied

Relaxation of nuclei

Bone School @ Bangalore^L

Permanent magnet

Magnetic field originates from permanently ferromagnetic materials

No need for additional electrical power or cooling

Disadvantages –
Low field strengths of 0.4 T.
Cost of magnet and supporting structures
Varying changes in the magnetic field

Electromagnet

Coils of wire wound on an iron core. Magnetised as current flows through.

 Superconducting magnets - partially built from superconducting materials

No resistence at absolute zero temp.

High magnetic field

Contraindications for MRI

Cerebral aneurysmal clips
Metallic foreign bodies in eye
Pacemaker

Metallic implant in the area being scanned

Open MRI

Open MRI

T1 image

T2 image

	Fat	Fluid
T1 images	Bright	Dark (hypointense)
T2 images	Less bright	Bright (hyperintense)

Bone School @

Disc herniation

ol @ Bangalore

Far lateral disc herniation

Absence of disc extension beyond the interspace

Disc bulge

- circumferential symmetrical extension beyond the interspace

- Focal, symmetric disc extension beyond the interspace
- Base is broader than any other diameter of the protrusion
- Remains within the outermost fibres of the annulus fibrosus

- Focal, asymmetric disc extension beyond the interspace
- Base is narrower than the diameter of the protrusion
- Penetrates annulus fibrosus but contained by posterior ligament

Disc Sequestration

The extruded disc is not in continuity with the rest of the disc.

Lumbar canal stenosis

Multi-level canal stenosis

Facet joint

ic 6 FTFE/M

L 25

AIR

Ultrascan Radiology

0

School @ Bangalore FH _71 feet

Disc Degeneration

High intensity zone HIZ

hool @ Bangalore

High intensity zone - HIZ

Sensitivity and specificity of HIZs was 27% and 87% Lei et al J Spinal Disord Tech. 2008

HIZ a reliable marker of painful outer annular
disruption in patients with LBPPeng et alEurEurSpine J 2006

MODIC CHANGES

	T1	T2	significance
TYPE 1	\downarrow	\uparrow	edema
TYPE II	1	→ (or slight ↑)	fatty degeneration
TYPE III	\downarrow	\downarrow	bony sclerosis

Type I

Type II

Type III

Significance of Modic changes

22% to 50% Modic changes in DDD

• 73% with Type I change and 11% with Type II, had significant low back pain. <u>Toyone et al JBJS 1994</u>

Conversions occur
 Kuisma et al Spine 2006

Variant 2:

Trauma, steroids, osteoporosis, over 70.

Radiologic Exam Procedure	Appropriateness Rating	
Plain Lumbar X-Rays	8	
Plain MRI	5	
MRI + Gadolinium	4	
Isotope Bone Scan	4	
CT	4	
Myelogram	2	
Myelogram/CT	2	

Bone School @ Bangalore

• High signal intensity in fractured vertebra

• Fresh fracture

- 50 year old lady
- Metastatic tumor in T10 vertebra (from thyroid)
 - Early paraparesis

